A Six Year, Low-resolution, Multibroadband Transit Photometry Study of HD 189733b

Author:

Gardner-Watkins Cristilyn N.ORCID,Kobulnicky Henry A.ORCID,Jang-Condell HannahORCID,Kasper David H.ORCID,Parker Brock A.ORCID,Bucci Ted,Cook Evan M.ORCID,Doublestein Kaitlin A.ORCID,Freels Cade,Galloway Dax G. T.,Helck SabrinaORCID,Komlodi CorinneORCID,Lindman Michael J.,Lyon McKell,Piccone Ashley N.ORCID,Wilkerson SamanthaORCID

Abstract

Abstract Transmission spectroscopy offers an invaluable opportunity to characterize the atmospheres of exoplanets. We present new ground-based optical transmission spectra of the hot Jupiter HD 189733b, derived from nine transits observed over a six year time span (2016–2021) using near-simultaneous u g r i broadband observations. We achieve an average (best) precision of 435 (280) ppm by implementing an optical diffuser on the prime focus spectrograph from the 2.3 m Wyoming Infrared Observatory telescope. The data provide new measurements of the apparent planetary radius with respect to the stellar radius, the spectral index of atmospheric opacity, and the time variability of the two quantities. Our results indicate an enhanced spectral slope in the optical regime ≈2.4 times steeper than would be expected from canonical Rayleigh scattering and that is consistent with earlier measurements of a super-Rayleigh slope (SRS). While the effect of stellar activity on the transmission spectrum complicates the measurement of the spectral slope, our multiepoch data set over six years can measure and average over stellar variations, yielding a mean spectral index of −9.9 ± 4.4. The 1200 K equilibrium temperature of HD 189733b places it in a sweet spot for the formation of SRSs and is consistent with vigorously mixing hazes in the atmosphere. Additionally, we find variations in the depth of the lightcurve during two of the transits, explainable as an increase in occulted star spots during June 2021. Although the star is active, the mean level of stellar activity does not seem to vary dramatically over our six years of observations, leading us to conclude that the variability in stellar activity is modest at most.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3