A Perfect Tidal Storm: HD 104067 Planetary Architecture Creating an Incandescent World

Author:

Kane Stephen R.ORCID,Fetherolf TaraORCID,Li ZhexingORCID,Polanski Alex S.ORCID,Howard Andrew W.ORCID,Isaacson HowardORCID,Močnik TeoORCID,Welter Sadie G.ORCID

Abstract

Abstract The discovery of planetary systems beyond the solar system has revealed a diversity of architectures, most of which differ significantly from our system. The initial detection of an exoplanet is often followed by subsequent discoveries within the same system as observations continue, measurement precision is improved, or additional techniques are employed. The HD 104067 system is known to consist of a bright K-dwarf host star and a giant planet in a ∼55 days period eccentric orbit. Here we report the discovery of an additional planet within the HD 104067 system, detected through the combined analysis of radial velocity (RV) data from the High Resolution Echelle Spectrometer and High Accuracy Radial velocity Planet Searcher instruments. The new planet has a mass similar to Uranus and is in an eccentric ∼14 days orbit. Our injection-recovery analysis of the RV data exclude Saturn-mass and Jupiter-mass planets out to 3 au and 8 au, respectively. We further present Transiting Exoplanet Survey Satellite observations that reveal a terrestrial planet candidate (R p = 1.30 ± 0.12 R ) in a ∼2.2 days period orbit. Our dynamical analysis of the three planet model shows that the two outer planets produce significant eccentricity excitation of the inner planet, resulting in tidally induced surface temperatures as high as ∼2600 K for an emissivity of unity. The terrestrial planet candidate may therefore be caught in a tidal storm, potentially resulting in its surface radiating at optical wavelengths.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3