Deep Two-phase, Hemispherical Magma Oceans on Lava Planets

Author:

Boukaré Charles-ÉdouardORCID,Cowan Nicolas B.ORCID,Badro JamesORCID

Abstract

Abstract Astronomers have discovered a handful of exoplanets with rocky bulk compositions but orbiting that orbit so close to their host star that the surface of the planet must be at least partially molten. It is expected that the dayside of such “lava planets” harbors a rock-vapor atmosphere that flows quickly toward the airless nightside—this partial atmosphere is critical to the interpretation of lava planet observations, but transports negligible heat toward the nightside. As a result, the surface temperature of the magma ocean may range from 3000 K near the substellar point down to 1500 K near the day–night terminator. We use simple models incorporating the thermodynamics and geochemistry of partial melt to predict the physical and chemical properties of the magma ocean as a function of the distance from the substellar point. Our principal findings are that: (1) the dayside magma ocean is much deeper than previously thought, probably extending down to the core–mantle boundary below the substellar point of an Earth-sized planet; (2) much of the dayside is only partially molten, leading to gradients in the surface chemistry of the magma ocean; and (3) the temperature at the base of the silicate mantle is as important as the surface temperature. In the most extreme cases, lava planet interiors could be cold enough such that thermal stratification below the substellar point is gravitationally stable. These findings have important implications for the dynamics of the magma ocean, as well as the composition and dynamics of the atmosphere.

Funder

USPC ∣ Labex UnivEarthS - ANR

ERC SEPtiM

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3