Multiple CNN Variants and Ensemble Learning for Sunspot Group Classification by Magnetic Type

Author:

Tang RongxinORCID,Zeng XunwenORCID,Chen ZhouORCID,Liao WentiORCID,Wang Jingsong,Luo BingxianORCID,Chen Yanhong,Cui Yanmei,Zhou Meng,Deng Xiaohua,Li Haimeng,Yuan Kai,Hong Sheng,Wu Zhiping

Abstract

Abstract A solar active region is a source of disturbance for the Sun–terrestrial space environment and usually causes extreme space weather, such as geomagnetic storms. The main indicator of an active region is sunspots. Certain types of sunspots are related to extreme space weather caused by eruptive events such as coronal mass ejections or solar flares. Thus, the automatic classification of sunspot groups is helpful to predict solar activity quickly and accurately. This paper completed the automatic classification of a sunspot group data set based on the Mount Wilson classification scheme, which contains continuum and magnetogram images provided by the Solar Dynamics Observatory’s Helioseismic and Magnetic Imager SHARP data from 2010 May 1 to 2017 December 12. After applying some data preprocessing steps such as image cropping and data standardization, the features of magnetic type in the data are more obvious, and the amount of data is increased. The processed data are spliced into two frames of single-channel data for the neural network to perform 3D convolution operations. This paper constructs a variety of convolutional neural networks with different structures and numbers of layers, selects 10 models as representatives, and chooses XGBoost, which is commonly used in ensemble-learning algorithms, to fuse the results of independent classification models. We found that XGBoost is an effective way to fuse models, which is proved by the relatively balanced high scores in the three magnetic types. The accuracy of the ensemble model is above 92%. The F1 scores of the magnetic types of Alpha, Beta, and Beta-x reached 0.95, 0.91, and 0.82 respectively.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3