Image Super-resolution Methods for FY-3E X-EUVI 195 Å Solar Images

Author:

Yang Qinglin,Chen ZhouORCID,Tang RongxinORCID,Deng Xiaohua,Wang Jinsong

Abstract

Abstract Solar eruptions and the solar wind are sources of space weather disturbances, and extreme-ultraviolet (EUV) observations are widely used to research solar activity and space weather forecasts. Fengyun-3E is equipped with the Solar X-ray and Extreme Ultraviolet Imager, which can observe EUV imaging data. Limited by the lower resolution, however, we research super-resolution techniques to improve the data quality. Traditional image interpolation methods have limited expressive ability, while deep-learning methods can learn to reconstruct high-quality images through training on paired data sets. There is a wide variety of super-resolution models. We try these three representative models: Real-ESRGAN combined with generative adversarial networks, residual channel-attention networks (RCAN) based on channel attention, and SwinIR, based on self-attention. Instruments on different satellites differ in observation time, angle, and resolution, so we selected Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) 193 Å images with similar wavelengths as a reference and used a feature-based method for image registration to eliminate slight deformations to build training data sets. Finally, we compare the above methods in their evaluation metrics and visual quality. RCAN has the highest peak signal-to-noise ratio and structural similarity evaluation. Real-ESRGAN model is the best in the Learned Perceptual Image Patch Similarity index, and its results visually show that it has more highly detailed textures. The corrected super-resolution results can complement the SDO/AIA data to provide solar EUV images with a higher temporal resolution for space weather forecasting and solar physics research.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3