Toward Model Compression for a Deep Learning–Based Solar Flare Forecast on Satellites

Author:

Feng Kai,Xu LongORCID,Zhao Dong,Liu Sixuan,Huang XinORCID

Abstract

Abstract Timely solar flare forecasting is challenged by the delay of transmitting vast amounts of data from the satellite to the ground. To avoid this delay, it is expected that forecasting models will be deployed on satellites. Thus, transmitting forecasting results instead of huge volumes of observation data would greatly save network bandwidth and reduce forecasting delay. However, deep-learning models have a huge number of parameters so they need large memory and strong computing power, which hinders their deployment on satellites with limited memory and computing resources. Therefore, there is a great need to compress forecasting models for efficient deployment on satellites. First, three typical compression methods, namely knowledge distillation, pruning, and quantization, are examined individually for compressing of solar flare forecasting models. And then, an assembled compression model is proposed for better compressing solar flare forecasting models. The experimental results demonstrate that the assembled compression model can compress a pretrained solar flare forecasting model to only 1.67% of its original size while maintaining forecasting accuracy.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3