The CAMELS Project: Public Data Release

Author:

Villaescusa-Navarro FranciscoORCID,Genel ShyORCID,Anglés-Alcázar DanielORCID,Perez Lucia A.ORCID,Villanueva-Domingo PabloORCID,Wadekar DigvijayORCID,Shao HelenORCID,Mohammad Faizan G.ORCID,Hassan SultanORCID,Moser EmilyORCID,Lau Erwin T.ORCID,Machado Poletti Valle Luis FernandoORCID,Nicola Andrina,Thiele LeanderORCID,Jo YongseokORCID,Philcox Oliver H. E.ORCID,Oppenheimer Benjamin D.ORCID,Tillman MeganORCID,Hahn ChangHoonORCID,Kaushal NeeravORCID,Pisani AliceORCID,Gebhardt Matthew,Delgado Ana Maria,Caliendo JoyceORCID,Kreisch ChristinaORCID,Wong Kaze W. K.ORCID,Coulton William R.ORCID,Eickenberg Michael,Parimbelli GabrieleORCID,Ni Yueying,Steinwandel Ulrich P.ORCID,La Torre Valentina,Dave RomeelORCID,Battaglia Nicholas,Nagai DaisukeORCID,Spergel David N.ORCID,Hernquist LarsORCID,Burkhart BlakesleyORCID,Narayanan DesikaORCID,Wandelt BenjaminORCID,Somerville Rachel S.ORCID,Bryan Greg L.ORCID,Viel MatteoORCID,Li YinORCID,Irsic VidORCID,Kraljic KatarinaORCID,Marinacci FedericoORCID,Vogelsberger MarkORCID

Abstract

Abstract The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lyα spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at https://camels.readthedocs.io.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmology with Multiple Galaxies;The Astrophysical Journal;2024-07-01

2. Total and dark mass from observations of galaxy centers with machine learning;Astronomy & Astrophysics;2024-05-30

3. Clusternets: a deep learning approach to probe clustering dark energy;Monthly Notices of the Royal Astronomical Society;2024-05-13

4. Probing the Circumgalactic Medium with Fast Radio Bursts: Insights from CAMELS;The Astrophysical Journal;2024-05-01

5. A self-similar model of galaxy formation and dark halo relaxation;Journal of Cosmology and Astroparticle Physics;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3