Probing the Circumgalactic Medium with Fast Radio Bursts: Insights from CAMELS

Author:

Medlock Isabel,Nagai DaisukeORCID,Singh Priyanka,Oppenheimer BenjaminORCID,Anglés-Alcázar DanielORCID,Villaescusa-Navarro Francisco

Abstract

Abstract Most diffuse baryons, including the circumgalactic medium (CGM) surrounding galaxies and the intergalactic medium (IGM) in the cosmic web, remain unmeasured and unconstrained. Fast radio bursts (FRBs) offer an unparalleled method to measure the electron dispersion measures (DMs) of ionized baryons. Their distribution can resolve the missing baryon problem and constrain the history of feedback theorized to impart significant energy to the CGM and IGM. We analyze the Cosmology and Astrophysics with Machine Learning Simulations using three suites, IllustrisTNG, SIMBA, and Astrid, each varying six parameters (two cosmological and four astrophysical feedback), for a total of 183 distinct simulation models. We find significantly different predictions between the fiducial models of the suites owing to their different implementations of feedback. SIMBA exhibits the strongest feedback, leading to the smoothest distribution of baryons and reducing the sight-line-to-sight-line variance in DMs between z = 0 and 1. Astrid has the weakest feedback and the largest variance. We calculate FRB CGM measurements as a function of galaxy impact parameter, with SIMBA showing the weakest DMs due to aggressive active galactic nucleus (AGN) feedback and Astrid the strongest. Within each suite, the largest differences are due to varying AGN feedback. IllustrisTNG shows the most sensitivity to supernova feedback, but this is due to the change in the AGN feedback strengths, demonstrating that black holes, not stars, are most capable of redistributing baryons in the IGM and CGM. We compare our statistics directly to recent observations, paving the way for the use of FRBs to constrain the physics of galaxy formation and evolution.

Funder

National Science Foundation

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3