Interstellar Complex Organic Molecules in SiO-traced Massive Outflows

Author:

Rojas-García O. S.ORCID,Gómez-Ruiz A. I.ORCID,Palau A.ORCID,Orozco-Aguilera M. T.,Dagostino M. Chavez,Kurtz S. E.ORCID

Abstract

Abstract The interstellar medium contains dust and gas, in which molecules can proliferate at high densities and in cold conditions. Interstellar complex organic molecules (iCOMs) are C-bearing species that contain at least six atoms. As they are detected in young stellar objects, iCOMs are expected to inhabit early stages of star formation evolution. In this study, we try to determine which iCOMs are present in the outflow component of massive protostars. To do this, we analyzed the morphological extension of blue- and redshifted iCOM emission in a sample of 11 massive protostars employing mapping observations at 1 mm within a ∼1 GHz bandwidth for both the IRAM-30 m and APEX telescopes. We modeled the iCOM emission of the central pointing spectra of our objects using the XCLASS local thermal equilibrium radiative transfer code. We detected the presence of several iCOMs such as CH3OH, 13CH3OH, CH3OCHO, C2H5C15N, and (c-C3H2)CH2. In G034.41+0.24, G327.29-0.58, G328.81+0.63, G333.13-0.43, G340.97-1.02, G351.45+0.66, and G351.77-0.54, the iCOM lines show a faint broad-line profile. Due to the offset peak positions of the blue- and redshifted emission, covering from ∼0.1 to 0.5 pc, these wings are possibly related to movements external to the compact core, such as large-scale low-velocity outflows. We have also established a correlation between the parent iCOM molecule CH3OH and the shock tracer SiO, reinforcing the hypothesis that shock environments provide the conditions to boost the formation of iCOMs via gas-phase reactions.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3