Affiliation:
1. Department of Chemistry and Biochemistry, University of Mississippi , University, MS 38677-1848, USA
Abstract
ABSTRACTNearly two decades since the detection of cyclopropenone (c-C3H2O) in the interstellar medium (ISM), the understanding of how this molecule comes to be remains incomplete. Many hypotheses place the ubiquitous hydrocarbon c-C3H2 at the centre of such discussions. However, insights into c-C3H2 chemistry are further complicated by the recent detection of ethynyl cyclopropenylidene (c-C3HC2H) and the observation of a radio line possibly belonging to methylenecyclopropene (c-C3H2CH2). In a necessary reconciliation of past and current work on the chemical capabilities of c-C3H2 in interstellar environments, the formation pathways of several functionalized cyclopropenes from c-C3H2 and a hydrogenated radical are explored. Chemically accurate CCSD(T)-F12/cc-pVTZ-F12 calculations are used to evaluate the energies of reaction and generate structures along the reaction pathway for formation products deemed chemically plausible. Potential energy scans are used to include or rule out certain paths to product formation based on conformation to the necessary requirements of cold interstellar chemistry. Four functionalized cyclopropenes in addition to c-C3H2O have net exothermic reactions when forming from c-C3H2 (c-C3H2CC, c-C3H2S, c-C3H2NH, and c-C3H2CH2). The former three are found to have reaction profiles favourable for formation in the cold ISM, while c-C3H2CH2 can only form by passage through an association barrier that must be mitigated by an energy source of some kind. c-C3H2S and c-C3H2NH are the best candidates for new spectroscopic searches. A complete detection of c-C3H2CH2 is necessary to fully understand cyclopropenylidene chemistry in the ISM.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献