SiO outflows in the most luminous and massive protostellar sources of the southern sky

Author:

Guerra-Varas N.,Merello M.,Bronfman L.,Duronea N.,Elia D.,Finger R.,Mendoza E.

Abstract

Context. High-mass star formation is far less understood than low-mass star formation. It entails the ejection of matter through molecular outflows, which disturbs the protostellar clump. Studying these outflows and the shocked gas caused by them is the key to a better understanding of this process. Aims. The present study aims to characterise the behaviour of molecular outflows in the most massive protostellar sources in the southern Galaxy by looking for evolutionary trends and associating the presence of shocked gas with outflow activity. Methods. We present APEX SEPIA180 (Band 5) observations (beamwidth ~36″) of SiO(4-3) molecular outflow candidates towards a well-selected sample of 32 luminous and dense clumps, which are candidates for harbouring hot molecular cores. We study the emission of the SiO(4-3) line, which is an unambiguous tracer of shocked gas, and recent and active outflow activity, as well as the HCO+(2-1) and H13CO+(2-1) lines. Results. Results show that 78% of our sample (25 sources) present SiO emission, revealing the presence of shocked gas. Nine of these sources are also found to have wings in the HCO+(2-1) line, indicating outflow activity. The SiO emission of these nine sources is generally more intense (Ta > 1 K) and wider (~61 km s−1 FWZP) than the rest of the clumps with SiO detection (~42 km s−1 FWZP), suggesting that the outflows in this group are faster and more energetic. This indicates that the shocked material gets dispersed as the core evolves and outflow activity decreases. Three positive linear correlations are found: a weak one (between the bolometric luminosity and outflow power) and two strong ones (one between the outflow power and the rate of matter expulsion and the other between the kinetic energy and outflow mass). These correlations suggest that more energetic outflows are able to mobilise more material. No correlation was found between the evolutionary stage indicator L/M and SiO outflow properties, supporting that molecular outflows happen throughout the whole high-mass star formation process. Conclusions. We conclude that sources with both SiO emission and HCO+ wings and sources with only SiO emission are in an advanced stage of evolution in the high-mass star formation process, and there is no clear evolutionary difference between them. The former present more massive and more powerful SiO outflows than the latter. Therefore, looking for more outflow signatures such as HCO+ wings could help identify more massive and active massive star-forming regions in samples of similarly evolved sources, and could also help identify sources with older outflow activity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference96 articles.

1. The Extraordinary Outflow toward G5.89−0.39

2. CH 3 CN Observations toward Southern Massive Star‐forming Regions

3. Arce H. G., Shepherd D., Gueth F., et al. 2007, in Protostars and Planets V, eds. Reipurth B., Jewitt D., & Keil K. (Tucson: University of Arizona Press), 245

4. Protostellar Outflows

5. ALMA Observations Reveal No Preferred Outflow-filament and Outflow-magnetic Field Orientations in Protoclusters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3