A Transparent Window into Early-type Stellar Variability

Author:

Jermyn Adam S.ORCID,Anders Evan H.ORCID,Cantiello MatteoORCID

Abstract

Abstract Subsurface convection zones are ubiquitous in early-type stars. Driven by narrow opacity peaks, these thin convective regions transport little heat but play an important role in setting the magnetic properties and surface variability of stars. Here we demonstrate that these convection zones are not present in as wide a range of stars as previously believed. In particular, there are regions which 1D stellar evolution models report to be convectively unstable but which fall below the critical Rayleigh number for onset of convection. For sub-solar metallicity this opens up a stability window in which there are no subsurface convection zones. For Large Magellanic Cloud metallicity this surface stability region extends roughly between 8 and 16M , increasing to 8–35M for Small Magellanic Cloud metallicity. Such windows are then an excellent target for probing the relative influence of subsurface convection and other sources of photometric variability in massive stars.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3