Photometric detection of internal gravity waves in upper main-sequence stars

Author:

Bowman D. M.ORCID,Aerts C.,Johnston C.,Pedersen M. G.,Rogers T. M.,Edelmann P. V. F.,Simón-Díaz S.,Van Reeth T.,Buysschaert B.,Tkachenko A.,Triana S. A.

Abstract

Context. Main sequence stars with a convective core are predicted to stochastically excite internal gravity waves (IGWs), which effectively transport angular momentum throughout the stellar interior and explain the observed near-uniform interior rotation rates of intermediate-mass stars. However, there are few detections of IGWs, and fewer still made using photometry, with more detections needed to constrain numerical simulations. Aims. We aim to formalise the detection and characterisation of IGWs in photometric observations of stars born with convective cores (M ≳ 1.5 M) and parameterise the low-frequency power excess caused by IGWs. Methods. Using the most recent CoRoT light curves for a sample of O, B, A and F stars, we parameterised the morphology of the flux contribution of IGWs in Fourier space using an MCMC numerical scheme within a Bayesian framework. We compared this to predictions from IGW numerical simulations and investigated how the observed morphology changes as a function of stellar parameters. Results. We demonstrate that a common morphology for the low-frequency power excess is observed in early-type stars observed by CoRoT. Our study shows that a background frequency-dependent source of astrophysical signal is common, which we interpret as IGWs. We provide constraints on the amplitudes of IGWs and the shape of their detected frequency spectrum across a range of mass, which is the first ensemble study of stochastic variability in such a diverse sample of stars. Conclusions. The evidence of a low-frequency power excess across a wide mass range supports the interpretation of IGWs in photometry of O, B, A and F stars. We also discuss the prospects of observing hundreds of massive stars with the Transiting Exoplanet Survey Satellite (TESS) in the near future.

Funder

H2020 European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference273 articles.

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of stratification on overshooting and waves atop the convective core of M⊙ main-sequence stars;Monthly Notices of the Royal Astronomical Society;2024-07-05

2. The IACOB project;Astronomy & Astrophysics;2024-07

3. The Potential of Asteroseismology to Resolve the Blue Supergiant Problem;The Astrophysical Journal Letters;2024-05-30

4. Characterizing B stars from Kepler/K2 Campaign 11;Astronomy & Astrophysics;2024-05-27

5. β Cephei Pulsators in Eclipsing Binaries Observed with TESS;The Astrophysical Journal Supplement Series;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3