Effects of stratification on overshooting and waves atop the convective core of M⊙ main-sequence stars

Author:

Morison A1ORCID,Le Saux A2ORCID,Baraffe I13,Morton J1ORCID,Guillet T1ORCID,Vlaykov D G4ORCID,Goffrey T56,Pratt J7

Affiliation:

1. Physics and Astronomy, University of Exeter , Exeter EX4 4QL , UK

2. Laboratoire de Météorologie Dynamique (IPSL), Sorbonne Université, CNRS , Ecole Polytechnique, Ecole Normale Supérieure, 4 place Jussieu, 75252 Paris cedex 05 , France

3. Ecole Normale Supérieure de Lyon , CRAL (UMR CNRS 5574), Université de Lyon, F-69007 Lyon , France

4. Mathematics and Statistics, University of Exeter , Exeter EX4 4QF , UK

5. Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick , Coventry CV4 7AL , UK

6. Healthcare Technology Institute, School of Chemical Engineering, The University of Birmingham , Birmingham B15 2TT , UK

7. Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, CA 94550 , USA

Abstract

ABSTRACT As a massive star evolves along the main sequence, its core contracts, leaving behind a stable stratification in helium. We simulate two-dimensional convection in the core at three different stages of evolution of a $5\,\mathrm{ M}_{\odot }$ star, with three different stratifications in helium atop the core. We study the propagation of internal gravity waves in the stably stratified envelope, along with the overshooting length of convective plumes above the convective boundary. We find that the stratification in helium in evolved stars hinders radial motions and effectively shields the radiative envelope against plume penetration. This prevents convective overshooting from being an efficient mixing process in the radiative envelope. In addition, internal gravity waves are less excited in evolved models compared to the zero-age-main-sequence model, and are also more damped in the stratified region above the core. As a result, the wave power is several orders of magnitude lower in mid- and terminal-main-sequence models compared to zero-age-main-sequence stars.

Funder

ERC

STFC

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3