Abstract
AbstractMassive stars die in catastrophic explosions that seed the interstellar medium with heavy elements and produce neutron stars and black holes. Predictions of the explosion’s character and the remnant mass depend on models of the star’s evolutionary history. Models of massive star interiors can be empirically constrained by asteroseismic observations of gravity wave oscillations. Recent photometric observations reveal a ubiquitous red noise signal on massive main sequence stars; a hypothesized source of this noise is gravity waves driven by core convection. We present three-dimensional simulations of massive star convection extending from the star’s centre to near its surface, with realistic stellar luminosities. Using these simulations, we predict the photometric variability due to convectively driven gravity waves at the surfaces of massive stars, and find that gravity waves produce photometric variability of a lower amplitude and lower characteristic frequency than the observed red noise. We infer that the photometric signal of gravity waves excited by core convection is below the noise limit of current observations, and thus the red noise must be generated by an alternative process.
Funder
National Aeronautics and Space Administration
National Science Foundation
CIERA Postdoctoral Fellowship
Center for Computational Astrophysics
Publisher
Springer Science and Business Media LLC
Subject
Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献