Planetesimal Formation by the Gravitational Instability of Dust Ring Structures

Author:

Takahashi Sanemichi Z.ORCID,Kokubo EiichiroORCID,Inutsuka Shu-ichiroORCID

Abstract

Abstract We investigate the gravitational instability (GI) of dust ring structures and the formation of planetesimals by their gravitational collapse. The normalized dispersion relation of a self-gravitating ring structure includes two parameters that are related to its width and line mass (the mass per unit length). We survey these parameters and calculate the growth rate and wavenumber. Additionally, we investigate the formation of planetesimals by growth of the GI of the ring that is formed by the growth of the secular GI of the protoplanetary disk. We adopt a massive, dust-rich disk as a disk model. We find the range of radii for fragmentation by the ring GI as a function of the width of the ring. The innermost radius for the ring GI is smaller for a smaller ring width. We also determine the range of the initial planetesimal mass resulting from the fragmentation of the ring GI. Our results indicate that the planetesimal mass can be as large as 1028 g at its birth after the fragmentation. It can be as low as about 1025 g if the ring width is 0.1% of the ring radius, and the lower limit increases with the ring width. Furthermore, we obtain approximate formulae for the upper and lower limits of the planetesimal mass. We predict that the planetesimals formed by the ring GI have prograde rotations because of the Coriolis force acting on the contracting dust. This is consistent with the fact that many trans-Neptunian binaries exhibit prograde rotation.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3