Filling in the gaps: can gravitationally unstable discs form the seeds of gas giant planets?

Author:

Baehr Hans1234ORCID

Affiliation:

1. Department of Physics and Astronomy, The University of Georgia , Athens, GA 30602, USA

2. Center for Simulational Physics, The University of Georgia , Athens, GA 30602, USA

3. Department of Physics and Astronomy, University of Nevada, Las Vegas , 4505 South Maryland Parkway, Las Vegas, NV 89154, USA

4. Nevada Center for Astrophysics, University of Nevada, Las Vegas , 4505 South Maryland Parkway, Las Vegas, NV 89154, USA

Abstract

ABSTRACT Circumstellar discs likely have a short window when they are self-gravitating and prone to the effects of disc instability, but during this time the seeds of planet formation can be sown. It has long been argued that disc fragmentation can form large gas giant planets at wide orbital separations, but its place in the planet formation paradigm is hindered by a tendency to form especially large gas giants or brown dwarfs. We instead suggest that planet formation can occur early in massive discs, through the gravitational collapse of dust which can form the seeds of giant planets. This is different from the usual picture of self-gravitating discs, in which planet formation is considered through the gravitational collapse of the gas disc into a gas giant precursor. It is familiar in the sense that the core is formed first, and gas is accreted thereafter, as is the case in the core accretion scenario. However, by forming a ∼1 M⊕ seed from the gravitational collapse of dust within a self-gravitating disc there exists the potential to overcome traditional growth barriers and form a planet within a few times 105 yr. The accretion of pebbles is most efficient with centimetre-sized dust, but the accretion of millimetre sizes can also result in formation within a Myr. Thus, if dust can grow to these sizes, planetary seeds formed within very young, massive discs could drastically reduce the time-scale of planet formation and potentially explain the observed ring and gap structures in young discs.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3