Planetesimal and planet formation in transient dust traps

Author:

Sándor Zs.ORCID,Guilera O. M.ORCID,Regály Zs.,Lyra W.ORCID

Abstract

Context. The ring-like structures in protoplanetary discs that are observed in the cold dust emission by ALMA might be explained by dust aggregates trapped aerodynamically in pressure maxima. Aims. We investigate the effect of a transient pressure maximum that develops between two regimes with different turbulent levels. We study how such a pressure maximum collects dust aggregates and transforms them into large planetesimals and Moon-mass cores that can further grow into a few Earth-mass planets by pebble accretion, and eventually into giant planets by accreting a gaseous envelope. Methods. We developed a numerical model, incorporating the evolution of a gaseous disc, the growth and transport of pebbles, N-body interactions of growing planetary cores, and their backreaction to a gas disc by opening a partial gap. Planetesimal formation by streaming instability is parametrised in our model. Results. A transient pressure maximum efficiently accumulates dust particles that can grow larger than millimetre-sized. If this happens, dust aggregates can be transformed by the streaming instability process into large planetesimals, which can grow further by pebble accretion according to our assumptions. As the gas evolves towards a steady state, the pressure maximum vanishes, and the concentrated pebbles not transformed into planetesimals and accreted by the growing planet drift inward. During this inward drift, if the conditions of the streaming instability are met, planetesimals are formed in the disc within a wide radial range. Conclusions. A transient pressure maximum is a favourable place for planetesimal and planet formation during its lifetime and the concentration of pebbles induces continuous formation of planetesimals even after its disappearance. In addition, the formation of a planet can trigger the formation of planetesimals over a wide area of the protoplanetary disc.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Agencia I+D+i

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3