Diagnosing Limb Asymmetries in Hot and Ultrahot Jupiters with High-resolution Transmission Spectroscopy

Author:

Savel Arjun B.ORCID,Kempton Eliza M.-R.ORCID,Rauscher EmilyORCID,Komacek Thaddeus D.ORCID,Bean Jacob L.ORCID,Malik MatejORCID,Malsky IsaacORCID

Abstract

Abstract Due to their likely tidally synchronized nature, (ultra)hot Jupiter atmospheres should experience strongly spatially heterogeneous instellation. The large irradiation contrast and resulting atmospheric circulation induce temperature and chemical gradients that can produce asymmetries across the eastern and western limbs of these atmospheres during transit. By observing an (ultra)hot Jupiter’s transmission spectrum at high spectral resolution, these asymmetries can be recovered—namely through net Doppler shifts originating from the exoplanet’s atmosphere yielded by cross-correlation analysis. Given the range of mechanisms at play, identifying the underlying cause of observed asymmetry is nontrivial. In this work, we explore sources and diagnostics of asymmetries in high-resolution cross-correlation spectroscopy of hot and ultrahot Jupiters using both parameterized and self-consistent atmospheric models. If an asymmetry is observed, we find that it can be difficult to attribute it to equilibrium chemistry gradients because many other processes can produce asymmetries. Identifying a molecule that is chemically stable over the temperature range of a planetary atmosphere can help establish a baseline to disentangle the various potential causes of limb asymmetries observed in other species. We identify CO as an ideal molecule, given its stability over nearly the entirety of the ultrahot Jupiter temperature range. Furthermore, we find that if limb asymmetry is due to morning terminator clouds, blueshifts for a number of species should decrease during transit. Finally, by comparing our forward models to those of Kesseli et al., we demonstrate that binning high-resolution spectra into two phase bins provides a desirable trade-off between maintaining signal to noise and resolving asymmetries.

Funder

Heising-Simons Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3