A New Lever on Exoplanetary B Fields: Measuring Heavy Ion Velocities

Author:

Savel Arjun B.ORCID,Beltz HayleyORCID,Komacek Thaddeus D.ORCID,Tsai Shang-MinORCID,Kempton Eliza M.-R.ORCID

Abstract

Abstract Magnetic fields connect an array of planetary processes, from atmospheric escape to interior convection. Despite their importance, exoplanet magnetic fields are largely unconstrained by both theory and observation. In this Letter, we propose a novel method for constraining the B field strength of hot gas giants: comparing the velocities of heavy ions and neutral gas with high-resolution spectroscopy. The core concept of this method is that ions are directly deflected by magnetic fields. While neutrals are also affected by B fields via friction with field-accelerated ions, ionic gas should be more strongly coupled to the underlying magnetic field than bulk neutral flow. Hence, measuring the difference between the two velocities yields rough constraints on the B field, provided an estimate of the stellar UV flux is known. We demonstrate that heavy ions are particularly well suited for this technique because they are less likely to be entrained in complex hydrodynamic outflows than their lighter counterparts. We perform a proof-of-concept calculation with Ba ii, an ion whose velocity has been repeatedly measured at high confidence with high-resolution spectroscopy. Our work shows that a 10 G magnetic field would produce ∼1 km s−1 ion–neutral velocity differences at a microbar, whereas a 50 G magnetic field would produce ∼20 km s−1 velocity difference. With new leverage on magnetic fields, we will be able to investigate magnetic field generation in the extreme edge cases of hot gas giants, with wide-ranging consequences for planetary interior structure, dynamo theory, and habitability.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3