Modeling a Coronal Mass Ejection as a Magnetized Structure with EUHFORIA

Author:

Sindhuja G.ORCID,Singh Jagdev,Asvestari E.ORCID,Raghavendra Prasad B.

Abstract

Abstract We studied an Earth-directed coronal mass ejection (CME) that erupted on 2015 March 15. Our aim was to model the CME flux rope as a magnetized structure using the European Heliospheric Forecasting Information Asset (EUHFORIA). The flux rope from eruption data (FRED) output was applied to the EUHFORIA spheromak CME model. In addition to the geometrical properties of the CME flux rope, we needed to input the parameters that determine the CME internal magnetic field like the helicity, tilt angle, and toroidal flux of the CME flux rope. According to the FRED technique geometrical properties of the CME flux rope are obtained by applying a graduated cylindrical shell fitting of the CME flux rope on the coronagraph images. The poloidal field magnetic properties can be estimated from the reconnection flux in the source region utilizing the post-eruption arcade method, which uses the Heliospheric Magnetic Imager magnetogram together with the Atmospheric Imaging Assembly (AIA) 193 Å images. We set up two EUHFORIA runs with RUN-1 using the toroidal flux obtained from the FRED technique and RUN-2 using the toroidal flux that was measured from the core dimming regions identified from the AIA 211 Å images. We found that the EUHFORIA simulation outputs from RUN-1 and RUN-2 are comparable to each other. Overall using the EUHFORIA spheromak model, we successfully obtained the magnetic field rotation of the flux rope, while the arrival time near Earth and the strength of the interplanetary CME magnetic field at Earth are not as accurately modeled.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3