Deciphering Faint Gyrosynchrotron Emission from a Coronal Mass Ejection Using Spectropolarimetric Radio Imaging

Author:

Kansabanik DevojyotiORCID,Mondal SurajitORCID,Oberoi DivyaORCID

Abstract

Abstract Measurements of the plasma parameters of coronal mass ejections (CMEs), particularly the magnetic field and nonthermal electron population entrained in the CME plasma, are crucial to understand their propagation, evolution, and geo-effectiveness. Spectral modeling of gyrosynchrotron (GS) emission from CME plasma has been regarded as one of the most promising remote-sensing techniques for estimating spatially resolved CME plasma parameters. Imaging the very low flux density CME GS emission in close proximity to the Sun with orders of magnitude higher flux density has, however, proven to be rather challenging. This challenge has only recently been met using the high dynamic range imaging capability of the Murchison Widefield Array (MWA). Although routine detection of GS is now within reach, the challenge has shifted to constraining the large number of free parameters in GS models, a few of which are degenerate, using the limited number of spectral points at which the observations are typically available. These degeneracies can be broken using polarimetric imaging. For the first time, we demonstrate this using our recently developed capability of high-fidelity polarimetric imaging on the data from the MWA. We show that spectropolarimetric imaging, even when only sensitive upper limits on circularly polarization flux density are available, is not only able to break the degeneracies but also yields tighter constraints on the plasma parameters of key interest than possible with total intensity spectroscopic imaging alone.

Funder

Department of Atomic Energy, Government of India

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3