Discovering Supernovae at the Epoch of Reionization with the Nancy Grace Roman Space Telescope

Author:

Moriya Takashi J.ORCID,Quimby Robert M.ORCID,Robertson Brant E.ORCID

Abstract

Abstract Massive stars play critical roles for the reionization of the universe. Individual massive stars at the reionization epoch (z > 6) are too faint to observe and quantify their contributions to reionization. Some massive stars, however, explode as superluminous supernovae (SLSNe) or pair-instability supernovae (PISNe) that are luminous enough to observe even at z > 6 and allow for the direct characterization of massive star properties at the reionization epoch. In addition, hypothetical long-sought-after PISNe are expected to be present preferentially at high redshifts, and their discovery will have a tremendous impact on our understanding of massive star evolution and the formation of stellar mass black holes. The near-infrared Wide Field Instrument on the Nancy Grace Roman Space Telescope will excel at discovering such rare high-redshift supernovae. In this work, we investigate the best survey strategy to discover and identify SLSNe and PISNe at z > 6 with Roman. We show that the combination of the F158 and F213 filters can clearly separate both SLSNe and PISNe at z > 6 from nearby supernovae through their colors and magnitudes. The limiting magnitudes are required to be 27.0 mag and 26.5 mag in the F158 and F213 filters, respectively, to identify supernovae at z > 6. If we conduct a 10 deg2 transient survey with these limiting magnitudes for five years with a cadence of one year, we expect to discover 22.5 ± 2.8 PISNe and 3.1 ± 0.3 SLSNe at z > 6, depending on the cosmic star formation history. The same survey is estimated to discover 76.1 ± 8.2 PISNe and 9.1 ± 0.9 SLSNe at 5 < z < 6. Such a supernova survey requires the total observational time of approximately 525 hr in five years. The legacy data acquired with the survey will also be beneficial for many different science cases including the study of high-redshift galaxies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The cosmic rate of pair-instability supernovae;Monthly Notices of the Royal Astronomical Society;2024-08-31

2. First star formation in extremely early epochs;Publications of the Astronomical Society of Japan;2024-07-05

3. Impacts of the 12C(α, γ)16O reaction rate on 56Ni nucleosynthesis in pair-instability supernovae;Monthly Notices of the Royal Astronomical Society;2024-05-17

4. Exploring Low-mass Black Holes through Tidal Disruption Events in the Early Universe: Perspectives in the Era of the JWST, Roman Space Telescope, and LSST Surveys;The Astrophysical Journal;2024-05-01

5. Contribution of population III stars to merging binary black holes;Reviews of Modern Plasma Physics;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3