Exploring Low-mass Black Holes through Tidal Disruption Events in the Early Universe: Perspectives in the Era of the JWST, Roman Space Telescope, and LSST Surveys

Author:

Inayoshi KoheiORCID,Kashiyama KazumiORCID,Li WenxiuORCID,Harikane YuichiORCID,Ichikawa KoheiORCID,Onoue MasafusaORCID

Abstract

Abstract The James Webb Space Telescope (JWST) has recently uncovered the presence of low-luminosity active galactic nuclei (AGNs) at z = 4–11. Spectroscopic observations have provided estimates of the nuclear black hole (BH) masses for these sources, extending the low-mass boundary down to M ∼ 106–7 M . Despite this breakthrough, the observed lowest mass of BHs is still ≳1–2 orders of magnitude heavier than the predicted mass range of their seed population, thereby leaving the initial mass distribution of massive BHs poorly constrained. In this paper, we focus on UV-to-optical (in the rest frame) flares of stellar tidal disruption events (TDEs) embedded in low-luminosity AGNs as a tool for exploring low-mass BH populations with ≲104–6 M . We provide an estimate of the TDE rate over z = 4–11, associated with the properties of JWST-detected AGN host galaxies, and we find that deep and wide survey programs with JWST and the Roman Space Telescope (RST) can detect and identify TDEs up to z ≃ 4–7. The predicted detection numbers of TDEs at z > 4 in 1 yr are N TDE 2 10 ( 0.2 2 ) for the JADES-Medium (and COSMOS-Web) survey with JWST and N TDE 2 10 ( 8 50 ) for the deep (and wide) tiers of the High Latitude Time Domain Survey with RST. We further discuss survey strategies for hunting for transient high-redshift TDEs in wide-field surveys with RST, as well as a joint observation campaign with the Vera C. Rubin Observatory for enhancing the detection number. The high-redshift TDE search will give us a unique opportunity to probe the mass distribution of early BH populations.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3