The Mass Accretion Rate and Stellar Properties in Class I Protostars

Author:

Fiorellino EleonoraORCID,Tychoniec ŁukaszORCID,Cruz-Sáenz de Miera FernandoORCID,Antoniucci SimoneORCID,Kóspál ÁgnesORCID,Manara Carlo F.ORCID,Nisini BrunellaORCID,Rosotti GiovanniORCID

Abstract

Abstract Stars collect most of their mass during the protostellar stage, yet the accretion luminosity and stellar parameters, which are needed to compute the mass accretion rate, are poorly constrained for the youngest sources. The aim of this work is to fill this gap, computing the stellar properties and the accretion rates for a large sample of Class I protostars located in nearby (<500 pc) star-forming regions and analyzing their interplay. We used a self-consistent method to provide accretion and stellar parameters by modeling the spectral energy distribution and using veiling information from near-IR observations when possible. We calculated accretion and stellar properties for the first time for 50 young stars. We focused our analysis on the 39 confirmed protostars, finding that their mass accretion rate varies between ∼10−8 and ∼10−4 M yr−1 in a stellar mass range between ∼0.1 and 3 M . We find systematically larger mass accretion rates for our Class I sample than for Class II objects. Although the mass accretion rate we found is high, it still suggests that either stars collect most of their mass before the Class I stage, or eruptive accretion is needed during the overall protostellar phase. Indeed, our results suggest that for a large number of protostars the disk can be unstable, which can result in accretion bursts and disk fragmentation in the past or in the future.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3