Long-term evolution of binary orbits induced by circumbinary disks

Author:

Valli RuggeroORCID,Tiede ChristopherORCID,Vigna-Gómez AlejandroORCID,Cuadra JorgeORCID,Siwek MagdalenaORCID,Ma Jing-ZeORCID,D’Orazio Daniel J.ORCID,Zrake JonathanORCID,de Mink Selma E.ORCID

Abstract

Circumbinary disks are found in a variety of astrophysical scenarios, spanning binary star formation to accreting supermassive black hole binaries. Depending on the characteristics of the system, the interaction with a circumbinary disk can either damp or excite the binary’s eccentricity and can also widen or shrink the orbit. To predict the outcome of the long-term disk-binary interaction, we present a new formalism based on the results of recent suites of hydrodynamic simulations, which resolve the complex geometry of the gas in the vicinity of the binary and fully account for the gravitational and accretion forces. We released a python package, spindler, that implements our model. We show that – under the assumed thin disk model with a fixed thickness and viscosity prescription – accretion onto the binary depletes the disk mass before inducing a significant change in the orbital separation or the mass ratio, unless the mass reservoir feeding the disk is comparable to the mass of the binary. This finding implies that, in most scenarios, an interaction with a circumbinary disk is not an efficient mechanism to shrink the orbit of the binary. However, the interaction can excite the eccentricity up to an equilibrium value, and induce a statistical correlation between the mass ratio and eccentricity, as long as the mass of the disk is at least a few percent of the mass of the binary. We consider the applicability of our model to a variety of astrophysical scenarios: during star formation, in evolved stellar binaries, triples, and in supermassive black hole binaries. We discuss the theoretical and observational implications of our predictions.

Funder

Kavli Foundation

Max-Planck-Institut für Astrophysik

Danmarks Frie Forskningsfond

Agencia Nacional de Investigación y Desarrollo

Kavli Institute for Theoretical Physics, University of California, Santa Barbara

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3