The Impact of Beam Variations on Power Spectrum Estimation for 21 cm Cosmology. I. Simulations of Foreground Contamination for HERA

Author:

Kim HonggeunORCID,Nhan Bang D.ORCID,Hewitt Jacqueline N.ORCID,Kern Nicholas S.ORCID,Dillon Joshua S.ORCID,de Lera Acedo EloyORCID,Dynes Scott B. C.ORCID,Mahesh NiveditaORCID,Fagnoni NicolasORCID,DeBoer David R.ORCID

Abstract

Abstract Detecting cosmological signals from the Epoch of Reionization (EoR) requires high-precision calibration to isolate the cosmological signals from foreground emission. In radio interferometry, the perturbed primary beams of antenna elements can disrupt the precise calibration, which results in the contamination of the foreground-free region, or the EoR window, in the cylindrically averaged power spectrum. For the Hydrogen Epoch of Reionization Array (HERA), we simulate and characterize the perturbed primary beams that are induced by feed motions, such as axial, lateral, and tilting motions, above the 14 m dish. To understand the effect of the perturbed beams, visibility measurements are modeled with two different foreground components, point sources and diffuse sources, and we find that different feed motions present a different reaction to each type of sky source. HERA’s redundant baseline calibration in the presence of nonredundant antenna beams due to feed motions introduces chromatic errors in the gain solutions, producing foreground power leakage into the EoR window. The observed leakage from the vertical feed motions comes predominantly from point sources around the zenith. Furthermore, the observed leakage from the horizontal and tilting feed motions comes predominantly from the diffuse components near the horizon. Mitigation of the chromatic gain errors will be necessary for robust detections of the EoR signals with minimal foreground bias, and this will be discussed in a subsequent paper.

Funder

the Gordon and Betty Moore Foundation

the National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3