The Role of the Instrumental Response in 21 cm Epoch of Reionization Power Spectrum Gridding Analyses

Author:

Barry NicholeORCID,Chokshi AmanORCID

Abstract

Abstract Reconstruction of the sky brightness measured by radio interferometers is typically achieved through gridding techniques, or histograms in spatial Fourier space. For Epoch of Reionization (EoR) 21 cm power spectrum measurements, extreme levels of gridding resolution are required to reduce spectral contamination, as explored in other works. However, the role of the shape of the Fourier space spreading function, or kernel, also has consequences in reconstructed power spectra. We decompose the instrumental Murchison Widefield Array (MWA) beam into a series of Gaussians and simulate the effects of finite kernel extents and differing shapes in gridding/degridding for optimal map making analyses. For the MWA, we find that the kernel must extend out to 0.001–0.0001% of the maximum value in order to measure the EoR using foreground avoidance. This requirement changes depending on beam shape, with compact kernels requiring far smaller extents for similar contamination levels at the cost of less-optimal errors. However, simple calibration using pixelated degridding results, regardless of shape of the kernel, cannot recover the EoR due to catastrophic errors caused by the pixel resolution. Including an opaque horizon with widefield beams also causes significant spectral contamination via a beam–horizon interaction that creates an infinitely extended kernel in Fourier space, which cannot be represented well. Thus, our results indicate that simple calibration via degridded models and optimal map making for extreme widefield instrumentation are not feasible.

Funder

ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3