Lost Horizon: Quantifying the Effect of Local Topography on Global 21 cm Cosmology Data Analysis

Author:

Bassett NeilORCID,Rapetti DavidORCID,Tauscher KeithORCID,Nhan Bang D.ORCID,Bordenave David D.,Hibbard Joshua J.,Burns Jack O.ORCID

Abstract

Abstract We present an investigation of the horizon and its effect on global 21 cm observations and analysis. We find that the horizon cannot be ignored when modeling low-frequency observations. Even if the sky and antenna beam are known exactly, forward models cannot fully describe the beam-weighted foreground component without accurate knowledge of the horizon. When fitting data to extract the 21 cm signal, a single time-averaged spectrum or independent multi-spectrum fits may be able to compensate for the bias imposed by the horizon. However, these types of fits lack constraining power on the 21 cm signal, leading to large uncertainties on the signal extraction, in some cases larger in magnitude than the 21 cm signal itself. A significant decrease in uncertainty can be achieved by performing multi-spectrum fits in which the spectra are modeled simultaneously with common parameters. The cost of this greatly increased constraining power, however, is that the time dependence of the horizon’s effect, which is more complex than its spectral dependence, must be precisely modeled to achieve a good fit. To aid in modeling the horizon, we present an algorithm and Python package for calculating the horizon profile from a given observation site using elevation data. We also address several practical concerns such as pixelization error, uncertainty in the horizon profile, and foreground obstructions such as surrounding buildings and vegetation. We demonstrate that our training-set-based analysis pipeline can account for all of these factors to model the horizon well enough to precisely extract the 21 cm signal from simulated observations.

Funder

NASA ∣ Solar System Exploration Research Virtual Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3