Abstract
Abstract
The precise measurements of energy spectra and anisotropy could help us uncover the local cosmic-ray accelerators. Our recent works have shown that spectral hardening above 200 GeV in the energy spectra and transition of large-scale anisotropy at ∼100 TeV are of local source origin. Less than 100 TeV, both spectral hardening and anisotropy explicitly indicate the dominant contribution from nearby sources. In this work, we further investigate the parameter space of sources allowed by the observational energy spectra and anisotropy amplitude. To obtain the best-fit source parameters, a numerical package to compute the parameter posterior distributions based on Bayesian inference, which is applied to perform an elaborate scan of parameter space. We find that by combining the energy spectra and anisotropy data, the permissible range of location and age of the local source is considerably reduced. When comparing with the current local supernova remnant (SNR) catalog, only Geminga SNR could be the proper candidate of the local cosmic-ray source.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献