Geminga SNR: Possible Candidate of Local Cosmic-Ray Factory (II)

Author:

Zhao Bing1,Guo Yiqing23,Zhou Xunxiu1

Affiliation:

1. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China

2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Accurate measurements of the energy spectrum and anisotropy can help us discover local cosmic-ray accelerators. Our recent works have shown that spectral hardening above 200 GeV in the energy spectra and transition of large-scale anisotropy at ∼100 TeV are of an unifying origin. Less than 100 TeV, both spectral hardening and anisotropy explicitly indicate the dominant contribution from nearby sources. Recent observations of CR anisotropy suggest that this phase is consistent with the locally regular magnetic field (LRMF) of the interstellar boundary explorer (IBEX) below 100 TeV. In this work, we further investigate the parameter space of sources allowed by the observational energy spectra and amplitude and phase of dipole anisotropy. To obtain the best-fit source parameters, a numerical algorithm is to compute the parameter posterior distributions based on Bayesian inference. We found that by combining the observations of the energy spectrum and anisotropy, the parameters of the model can be well constrained. The LRMF and the effect of the corresponding anisotropic diffusion are considered in this work. Finally, the phase results’ right ascension (R.A.)=3.2 h below 100 TeV was obtained by fitting, which is in general agreement with the experimental observations. Since the Geminga SNR is very close to the mean of the fitted parameters, it could be a candidate for a local cosmic-ray accelerator.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3