Nearby SNR: A Possible Common Origin of Multi-messenger Anomalies in the Spectra, Ratios, and Anisotropy of Cosmic Rays

Author:

Qiao Bing-QiangORCID,Guo Yi-QingORCID,Liu WeiORCID,Bi Xiao-JunORCID

Abstract

Abstract Multi-messenger anomalies, including spectral hardening or excess of nuclei, leptons, ratios of p ¯ / p and B/C, and anisotropic reversal, have been observed in past years. The AMS-02 experiment also revealed different spectral breaks for positrons and electrons at 284 GeV and beyond tera electron volts, respectively. It is natural to ask whether all those anomalies originate from one unified physical scenario. In this work, the spatially dependent propagation (SDP) with a nearby supernova remnant (SNR) source is adopted to reproduce the abovementioned anomalies. There possibly exists a dense molecular cloud (DMC) around SNRs and the secondary particles can be produced by pp collision or fragmentation between the accelerated primary cosmic rays and DMC. As a result, the spectral hardening for primary and secondary particles and ratios of B/C and p ¯ / p can be well reproduced. Due to the energy loss at the source age of 330 kyr, the characteristic spectral break-off for a primary electron is at about 1 TeV as hinted at by the measurements. The secondary positrons and electrons from charged pion take up 5% of energy from their mother particles, so the positron spectrum has a break-off at ∼250 GeV. Therefore, the different spectral breaks for positrons and electrons together with other anomalies can be fulfilled in this unified physical scenario. More interesting is that we also obtain the featured structures as spectral break-offs at 5 TeV for secondary particles of Li, Be, and B, which can be used to verify our model. We hope that those tagged structures can be observed by the new generation of spaceborne experiment HERD in the future.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3