Detection of Flare-induced Plasma Flows in the Corona of EV Lac with X-Ray Spectroscopy

Author:

Chen HechaoORCID,Tian HuiORCID,Li HaoORCID,Wang JianguoORCID,Lu Hongpeng,Xu Yu,Hou ZhenyongORCID,Wu Yuchuan

Abstract

Abstract Stellar flares are characterized by sudden enhancement of electromagnetic radiation from the atmospheres of stars. Compared to their solar counterparts, our knowledge on the coronal plasma dynamics of stellar flares and their connection to coronal mass ejections remains very limited. With time-resolved high-resolution spectroscopic observations from the Chandra X-ray Observatory, we detected noticeable coronal plasma flows during several stellar flares on a nearby dMe star EV Lac. In the observed spectra of O viii (3 MK), Fe xvii (6 MK), Mg xii (10 MK), and Si xiv (16 MK) lines, these flare-induced upflows/downflows appear as significant Doppler shifts of several tens to 130 km s−1 , and the upflow velocity generally increases with temperature. Variable line ratios of the Si xiii triplet reveal that this plasma flows in most flares are accompanied by an increase in the coronal plasma density and temperature. We interpret these results as X-ray evidence of chromospheric evaporation on EV Lac. In two successive flares, the plasma flow pattern and a sharp increase of the measured coronal density are highly suggestive of explosive evaporation. The transition from redshifts to blueshifts in such an explosive evaporation occurs at a temperature of at least 10 MK, much higher than that observed in solar flares (∼1 MK). However, in one flare the cool and warm upflows appear to be accompanied by a decreasing plasma density, which might be explained by a stellar filament/prominence eruption coupled to this flare. These results provide important clues to understanding the coronal plasma dynamics during flares on M dwarfs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3