Simulated Coronal Mass Ejections on a Young Solar-type Star and the Associated Instantaneous Angular Momentum Loss

Author:

Xu YuORCID,Alvarado-Gómez Julián D.ORCID,Tian HuiORCID,Poppenhäger KatjaORCID,Guerrero GustavoORCID,Liu Xianyu

Abstract

Abstract Coronal mass ejections (CMEs) on stars can change the stars’ magnetic field configurations and mass-loss rates during the eruption and propagation and therefore, may affect the stars’ rotation properties on long timescales. The dynamics of stellar CMEs and their influence on the stellar angular momentum loss rate are not yet well understood. In order to start investigating these CME-related aspects on other stars, we conducted a series of magnetohydrodynamic simulations of CMEs on a solar-type star of moderate activity levels. The propagation and evolution of the CMEs were traced in the three-dimensional outputs and the temporal evolution of their dynamic properties (such as masses, velocities, and kinetic energies) were determined. The simulated stellar CMEs are more massive and energetic than their solar analog, which is a result of the stronger magnetic field on the surface of the simulated star than that of the Sun. The simulated CMEs display masses ranging from ∼1016 to ∼1018 g and kinetic energies from ∼1031 to ∼1033 erg. We also investigated the instantaneous influence of the CMEs on the star’s angular momentum loss rate. Our results suggest that angular momentum can either be added to or removed from the star during the evolution of CME events. We found a positive correlation between the amplitude of the angular momentum loss rate variation and the CME’s kinetic energy as well as mass, suggesting that more energetic/massive CMEs have a higher possibility to add angular momentum to the star.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3