Characterizing Observed Extra Mixing Trends in Red Giants using the Reduced Density Ratio from Thermohaline Models

Author:

Fraser Adrian E.ORCID,Joyce MeridithORCID,Anders Evan H.ORCID,Tayar JamieORCID,Cantiello MatteoORCID

Abstract

Abstract Observations show an almost ubiquitous presence of extra mixing in low-mass upper giant branch stars. The most commonly invoked explanation for this is thermohaline mixing. One-dimensional stellar evolution models include various prescriptions for thermohaline mixing, but the use of observational data directly to discriminate between thermohaline prescriptions has thus far been limited. Here, we propose a new framework to facilitate direct comparison: using carbon-to-nitrogen measurements from the Sloan Digital Sky Survey-IV APOGEE survey as a probe of mixing and a fluid parameter known as the reduced density ratio from one-dimensional stellar evolution programs, we compare the observed amount of extra mixing on the upper giant branch to predicted trends from three-dimensional fluid dynamics simulations. Using this method, we are able to empirically constrain how mixing efficiency should vary with the reduced density ratio. We find the observed amount of extra mixing is strongly correlated with the reduced density ratio and that trends between reduced density ratio and fundamental stellar parameters are robust across choices for modeling prescription. We show that stars with available mixing data tend to have relatively low density ratios, which should inform the regimes selected for future simulation efforts. Finally, we show that there is increased mixing at low reduced density ratios, which is consistent with current hydrodynamical models of thermohaline mixing. The introduction of this framework sets a new standard for theoretical modeling efforts, as validation for not only the amount of extra mixing, but trends between the degree of extra mixing and fundamental stellar parameters is now possible.

Funder

NSF

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peculiarities of the chemical enrichment of metal-poor stars in the Milky Way Galaxy;Astronomy & Astrophysics;2024-07

2. 12C/13C of Kepler giant stars: The missing piece of the mixing puzzle;Astronomy & Astrophysics;2024-04

3. Magnetized Fingering Convection in Stars;The Astrophysical Journal;2024-03-29

4. Convective mixing: the formation channel of Li-rich giants;Monthly Notices of the Royal Astronomical Society;2024-03-01

5. Spectroscopic Distance, Mass, and Age Estimations for APOGEE DR17;The Astronomical Journal;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3