The Instantaneous Redshift Difference of Gravitationally Lensed Images: Theory and Observational Prospects

Author:

Wang ChengyiORCID,Bolejko KrzysztofORCID,Lewis Geraint F.ORCID

Abstract

Abstract Due to the expansion of our universe, the redshift of distant objects changes with time. Although the amplitude of this redshift drift is small, it will be measurable with decade-long campaigns by the next generation of telescopes. Here we present an alternative view of the redshift drift which captures the expansion of the universe in single-epoch observations of the multiple images of gravitationally lensed sources. Considering a sufficiently massive lens, with an associated time delay of order decades, simultaneous photons arriving at a detector would have been emitted decades earlier in one image compared to another, leading to an instantaneous redshift difference between the images. We also investigated the peculiar velocity which may influence the redshift difference in observation. While still requiring the observational power of the next generation of telescopes and instruments, the advantage of such a single-epoch detection over other redshift drift measurements is that it will be less susceptible to systematic effects that result from requiring instrument stability over decade-long campaigns.

Funder

Australian Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3