The redshift difference in gravitational lensed systems: a novel probe of cosmology

Author:

Wang Chengyi1ORCID,Bolejko Krzysztof2ORCID,Lewis Geraint F1ORCID

Affiliation:

1. Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney , NSW 2006 , Australia

2. School of Natural Sciences, College of Sciences and Engineering, University of Tasmania , Private Bag 37, Hobart, TAS 7001 , Australia

Abstract

ABSTRACT The exploration of the redshift drift, a direct measurement of cosmological expansion, is expected to take several decades of observation with stable, sensitive instruments. We introduced a new method to probe cosmology that bypasses the long-period observation by observing the redshift difference, an accumulation of the redshift drift, in multiple-image gravitational lens systems. With this, the photons observed in each image will have traversed through different paths between the source and the observer, and so the lensed images will show different redshifts when observed at the same instance. Here, we consider the impact of the underlying cosmology on the observed redshift difference in gravitational lens systems, generating synthetic data for realistic lens models and exploring the accuracy of determined cosmological parameters. We show that, while the redshift difference is sensitive to the densities of matter and dark energy within a universe, it is independent of the Hubble constant. Finally, we determine the observational considerations for using the redshift difference as a cosmological probe, finding that one thousand lensed sources are enough to make robust determinations of the underlying cosmological parameters. Upcoming cluster lens surveys, such as the Euclid, are expected to detect a sufficient number of such systems.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction to: Redshift drift and strong gravitational lensing;Monthly Notices of the Royal Astronomical Society;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3