On Dark Matter and Dark Energy in CCC+TL Cosmology

Author:

Gupta Rajendra P.1ORCID

Affiliation:

1. Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Abstract

Relaxing the temporal constancy constraint on coupling constants in an expanding universe results in Friedmann equations containing terms that may be interpreted as dark energy and dark matter. When tired light (TL) was considered to complement the redshift due to the expanding universe, the resulting covarying coupling constants (CCC+TL) model not only fit the Type Ia supernovae data as precisely as the ΛCDM model, but also resolved concerns about the angular size of cosmic dawn galaxies observed by the James Webb Space Telescope. The model was recently shown to be compliant with the baryon acoustic oscillation features in the galaxy distribution and the cosmic microwave background (CMB). This paper demonstrates that dark energy and dark matter of the standard ΛCDM model are not arbitrary but can be derived from the CCC approach based on Dirac’s 1937 hypothesis. The energy densities associated with dark matter and dark energy turn out to be about the same in the ΛCDM and the CCC+TL models. However, the critical density in the new model can only account for the baryonic matter in the universe, raising concerns about how to account for observations requiring dark matter. We therefore analyze some key parameters of structure formation and show how they are affected in the absence of dark matter in the CCC+TL scenario. It requires reconsidering alternatives to dark matter to explain observations on gravitationally bound structures. Incidentally, since the CCC models inherently have no dark energy, it has no coincidence problem. The model’s consistency with the CMB power spectrum, BBN element abundances, and other critical observations is yet to be established.

Funder

Macronix Research Corporation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3