Ammonia Ices Revisited: New IR Intensities and Optical Constants for Solid NH3

Author:

Hudson Reggie L.ORCID,Gerakines Perry A.ORCID,Yarnall Yukiko Y.ORCID

Abstract

Abstract Solid ammonia (NH3) is the only nitrogen-containing polyatomic molecule reported in both interstellar and solar system ices. However, an examination of the literature reveals significant omissions and difficulties in earlier work that can hinder quantitative measurements of solid NH3 by infrared (IR) methods by both astronomical observers and laboratory spectroscopists. Here we reinvestigate the IR spectra of NH3 ices in amorphous and crystalline forms to determine mid- and near-IR intensities. The IR absorption coefficients, band strengths, and optical constants are presented for both amorphous and crystalline NH3, along with new density and refractive index (λ = 670 nm) measurements needed to quantify our IR results. We find that two widely used approximate IR band strengths for amorphous NH3 are nearly 30% higher than measured values after corrections for the compound’s density. We have also used our new results to rescale two NH3 near-IR band strengths in the literature, finding that they increase by about 60%. Some applications of our new results are described along with suggestions for future studies. Optical constants are available in electronic form.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3