Formation of N–bearing complex organic molecules in molecular clouds: Ketenimine, acetonitrile, acetaldimine, and vinylamine via the UV photolysis of C2H2 ice

Author:

Chuang K.-J.ORCID,Jäger C.ORCID,Santos J. C.ORCID,Henning Th.

Abstract

Context. The solid-state C2H2 chemistry in interstellar H2O-rich ice has been proposed to explain astronomically observed complex organic molecules (COMs), including ketene (CH2CO), acetaldehyde (CH3CHO), and ethanol (CH3CH2OH), toward early star-forming regions. This formation mechanism is supported by recent laboratory studies and theoretical calculations for the reactions of C2H2+OH/H. However, the analog reaction of C2H2+NH2 forming N-bearing species has been suggested to have a relatively low rate constant that is orders of magnitude lower than the value of C2H2+OH. Aims. This work extends our previous laboratory studies on O-bearing COM formation to investigate the interactions between C2H2 and NH3 ice triggered by cosmic ray-induced secondary UV photons under molecular cloud conditions. Methods. Experiments were performed in an ultra-high vacuum chamber to investigate the UV photolysis of the C2H2:NH3 ice mixture at 10 K. The ongoing chemistry was monitored in situ by Fourier-transform infrared spectroscopy as a function of photon fluence. The IR spectral identification of the newly formed N-bearing products was further secured by a quadrupole mass spectrometer during the temperature-programmed desorption experiment. Results. The studied ice chemistry of C2 H2 with NH2 radicals and H atoms resulting from the UV photodissociation of NH3 leads to the formation of several N-bearing COMs, including vinylamine (CH2CHNH2), acetaldimine (CH3CHNH), acetonitrile (CH3CN), ketenimine (CH2CNH), and tentatively ethylamine (CH3CH2NH2). The experimental results show an immediate and abundant CH2CHNH2 yield as the first-generation product, which is further converted into other chemical derivatives. The effective destruction and formation cross-section values of parent species and COMs were derived, and we discuss the chemical links among these molecules and their astronomical relevance.

Funder

ERC Advanced Grant

Dutch Research Council

Danish National Research Foundation

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3