Thermal Oxidation Reaction between NH3 and O3: Low-temperature Formation of an NH4+ -bearing Salt

Author:

Tribbett Patrick D.ORCID,Loeffler Mark J.ORCID

Abstract

Abstract NH3 has long been predicted to be an important component of outer solar system bodies, yet detection of this compound suggests a low abundance or absence on many objects where it would be expected. Here, we demonstrate that a thermally driven oxidation reaction between ammonia (NH3) and ozone (O3) in a H2O + NH3 + O3 mixture may contribute to the low abundance of NH3 on some of these objects, as this reaction efficiently occurs at temperatures as low as 70 K. We determined the overall activation energy for this reaction to be 17 ± 2 kJ mol−1, which is consistent with other chemical systems that react at cryogenic temperatures. The loss of these two compounds coincides with the formation of NH 4 + and NO 3 at low temperatures, both of which are observable with infrared spectroscopy. Warming our H2O + NH3 + O3 mixtures through sublimation, we find a number of higher-temperature phases, such as ammonia hemihydrate, nitric acid, and ammonium nitrate (NH4NO3). The most stable of these is NH4NO3, which remains on the substrate until temperatures near 270 K. The salt product within this sample contains near-infrared spectral features between 2.0 and 2.22 μm, which is a spectral region of interest for several outer solar system objects, including the Uranian satellites Miranda, Ariel and Umbriel, and Pluto's satellite Charon.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3