Which Component of Solar Magnetic Field Drives the Evolution of Interplanetary Magnetic Field over the Solar Cycle?

Author:

Yoshida Minami,Shimizu ToshifumiORCID,Toriumi ShinORCID

Abstract

Abstract The solar magnetic structure changes over the solar cycle. It has a dipole structure during solar minimum, where the open flux extends mainly from the polar regions into the interplanetary space. During maximum, a complex structure is formed with low-latitude active regions and weakened polar fields, resulting in spread open field regions. However, the components of the solar magnetic field that are responsible for long-term variations in the interplanetary magnetic field (IMF) are not clear, and the IMF strength estimated based on the solar magnetic field is known to be underestimated by a factor of 3–4 against the actual in situ observations (the open flux problem). To this end, we decomposed the coronal magnetic field into the components of the spherical harmonic function of degree and order (, m) using the potential field source surface model with synoptic maps from SDO/HMI for 2010–2021. As a result, we found that the IMF rapidly increased in 2014 December (7 months after the solar maximum), which coincided with the increase in the equatorial dipole, (, m) = (1, ±1), corresponding to the diffusion of active regions toward the poles and in the longitudinal direction. The IMF gradually decreased until 2019 December (solar minimum) and its variation corresponded to that of the nondipole component ≥ 2. Our results suggest that the understanding of the open flux problem may be improved by focusing on the equatorial dipole and the nondipole component and that the influence of the polar magnetic field is less significant.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3