Formulating Mass-loss Rates for Sun-like Stars: A Hybrid Model Approach

Author:

Shoda MunehitoORCID,Cranmer Steven R.ORCID,Toriumi ShinORCID

Abstract

Abstract We observe an enhanced stellar wind mass-loss rate from low-mass stars exhibiting higher X-ray flux. This trend, however, does not align with the Sun, where no evident correlation between X-ray flux and mass-loss rate is present. To reconcile these observations, we propose a hybrid model for the stellar wind from solar-type stars, incorporating both Alfvén wave dynamics and flux emergence-driven interchange reconnection, an increasingly studied concept guided by the latest heliospheric observations. For establishing a mass-loss rate scaling law, we perform a series of magnetohydrodynamic simulations across varied magnetic activities. Through a parameter survey concerning the surface (unsigned) magnetic flux (Φsurf) and the open-to-surface magnetic flux ratio (ξ open = Φopensurf), we derive a scaling law of the mass-loss rate given by M ̇ w / M ̇ w , = Φ surf / Φ surf 0.52 ξ open / ξ open 0.86 , where M ̇ w , = 2.0 × 10 14 M yr 1 , Φ surf = 3.0 × 10 23 Mx , and ξ open = 0.2 . By comparing cases with and without flux emergence, we find that the increase in the mass-loss rate with the surface magnetic flux can be attributed to the influence of flux emergence. Our scaling law demonstrates an agreement with solar wind observations spanning 40 yr, exhibiting superior performance when compared to X-ray-based estimations. Our findings suggest that flux emergence may play a significant role in the stellar winds of low-mass stars, particularly those originating from magnetically active stars.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3