Matching Globular Cluster Models to Observations

Author:

Rui Nicholas Z.ORCID,Kremer KyleORCID,Weatherford Newlin C.ORCID,Chatterjee SouravORCID,Rasio Frederic A.ORCID,Rodriguez Carl L.ORCID,Ye Claire S.ORCID

Abstract

Abstract As ancient, gravitationally bound stellar populations, globular clusters represent abundant, vibrant laboratories, characterized by high frequencies of dynamical interactions, coupled to complex stellar evolution. Using surface brightness and velocity dispersion profiles from the literature, we fit 59 Milky Way globular clusters to dynamical models from the CMC Cluster Catalog. Without performing any interpolation, and without any directed effort to fit any particular cluster, 26 globular clusters are well matched by at least one of our models. We discuss in particular the core-collapsed clusters NGC 6293, NGC 6397, NGC 6681, and NGC 6624, and the non-core-collapsed clusters NGC 288, NGC 4372, and NGC 5897. As NGC 6624 lacks well-fitting snapshots on the main CMC Cluster Catalog, we run six additional models in order to refine the fit. We calculate metrics for mass segregation, explore the production of compact object sources such as millisecond pulsars, cataclysmic variables, low-mass X-ray binaries, and stellar-mass black holes, finding reasonable agreement with observations. In addition, closely mimicking observational cuts, we extract the binary fraction from our models, finding good agreement, except in the dense core regions of core-collapsed clusters. Accompanying this paper are a number of python methods for examining the publicly accessible CMC Cluster Catalog, as well as any other models generated using CMC.

Funder

National Science Foundation

Department of Atomic Energy, Government of India

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3