Computational methods for collisional stellar systems

Author:

Spurzem RainerORCID,Kamlah AlbrechtORCID

Abstract

AbstractDense star clusters are spectacular self-gravitating stellar systems in our Galaxy and across the Universe—in many respects. They populate disks and spheroids of galaxies as well as almost every galactic center. In massive elliptical galaxies nuclear clusters harbor supermassive black holes, which might influence the evolution of their host galaxies as a whole. The evolution of dense star clusters is not only governed by the aging of their stellar populations and simple Newtonian dynamics. For increasing particle number, unique gravitational effects of collisional many-body systems begin to dominate the early cluster evolution. As a result, stellar densities become so high that stars can interact and collide, stellar evolution and binary stars change the dynamical evolution, black holes can accumulate in their centers and merge with relativistic effects becoming important. Recent high-resolution imaging has revealed even more complex structural properties with respect to stellar populations, binary fractions and compact objects as well as—the still controversial—existence of intermediate mass black holes in clusters of intermediate mass. Dense star clusters therefore are the ideal laboratory for the concomitant study of stellar evolution and Newtonian as well as relativistic dynamics. Not only the formation and disruption of dense star clusters has to be considered but also their galactic environments in terms of initial conditions as well as their impact on galactic evolution. This review deals with the specific computational challenges for modelling dense, gravothermal star clusters.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Jeans modelling of weakly flattened ellipsoidal systems;Monthly Notices of the Royal Astronomical Society;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3