Stellar Escape from Globular Clusters. II. Clusters May Eat Their Own Tails

Author:

Weatherford Newlin C.ORCID,Rasio Frederic A.ORCID,Chatterjee SouravORCID,Fragione GiacomoORCID,Kıroğlu FulyaORCID,Kremer KyleORCID

Abstract

Abstract We apply for the first time orbit-averaged Monte Carlo star cluster simulations to study tidal tail and stellar stream formation from globular clusters (GCs), assuming a circular orbit in a time-independent spherical Galactic potential. Treating energetically unbound bodies—potential escapers (PEs)—as collisionless enables this fast but spherically symmetric method to capture asymmetric extratidal phenomena with exquisite detail. Reproducing stream features such as epicyclic overdensities, we show how returning tidal tails can form after the stream fully circumnavigates the Galaxy, enhancing the stream's velocity dispersion by several kilometers per second in our ideal case. While a truly clumpy, asymmetric, and evolving Galactic potential would greatly diffuse such tails, they warrant scrutiny as potentially excellent constraints on the Galaxy’s history and substructure. Reexamining the escape timescale Δt of PEs, we find new behavior related to chaotic scattering in the three-body problem; the Δt distribution features sharp plateaus corresponding to distinct locally smooth patches of the chaotic saddle separating the phase-space basins of escape. We study for the first time Δt in an evolving cluster, finding that Δ t ( E J 0.1 , E J 0.4 ) for PEs with (low, high) Jacobi energy E J, flatter than for a static cluster ( E J 2 ). Accounting for cluster mass loss and internal evolution lowers the median Δt from ∼10 Gyr to ≲100 Myr. We finally outline potential improvements to escape in the Monte Carlo method intended to enable the first large grids of tidal tail/stellar stream models from full GC simulations and detailed comparison to stream observations.

Funder

National Science Foundation

National Aeronautics and Space Administration

Department of Atomic Energy, Government of India

Space Telescope Science Institute

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3