Inpainting Hydrodynamical Maps with Deep Learning

Author:

Mohammad Faizan G.ORCID,Villaescusa-Navarro FranciscoORCID,Genel ShyORCID,Anglés-Alcázar DanielORCID,Vogelsberger MarkORCID

Abstract

Abstract From 1000 hydrodynamic simulations of the CAMELS project, each with a different value of the cosmological and astrophysical parameters, we generate 15,000 gas temperature maps. We use a state-of-the-art deep convolutional neural network to recover missing data from those maps. We mimic the missing data by applying regular and irregular binary masks that cover either 15% or 30% of the area. We quantify the reliability of our results using two summary statistics: (1) the distance between the probability density functions, estimated using the Kolmogorov–Smirnov (K-S) test, and (2) the 2D power spectrum. We find an excellent agreement between the model prediction and the unmasked maps when using the power spectrum: better than 1% for k < 20 h Mpc−1 for any irregular mask. For regular masks, we observe a systematic offset of ∼5% when covering 15% of the maps, while the results become unreliable when 30% of the data is missing. The observed K-S test p-values favor the null hypothesis that the reconstructed and the ground-truth maps are drawn from the same underlying distribution when irregular masks are used. For regular-shaped masks, on the other hand, we find a strong evidence that the two distributions do not match each other. Finally, we use the model, trained on gas temperature maps, to inpaint maps from fields not used during model training. We find that, visually, our model is able to reconstruct the missing pixels from the maps of those fields with great accuracy, although its performance using summary statistics depends strongly on the considered field.

Funder

NSF ∣ MPS ∣ Division of Astronomical Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3