Nearest neighbour distributions: New statistical measures for cosmological clustering

Author:

Banerjee Arka123ORCID,Abel Tom123

Affiliation:

1. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA

2. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

3. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

Abstract

ABSTRACT The use of summary statistics beyond the two-point correlation function to analyse the non-Gaussian clustering on small scales, and thereby, increasing the sensitivity to the underlying cosmological parameters, is an active field of research in cosmology. In this paper, we explore a set of new summary statistics – the k-Nearest Neighbour Cumulative Distribution Functions (kNN-CDF). This is the empirical cumulative distribution function of distances from a set of volume-filling, Poisson distributed random points to the k-nearest data points, and is sensitive to all connected N-point correlations in the data. The kNN-CDF can be used to measure counts in cell, void probability distributions, and higher N-point correlation functions, all using the same formalism exploiting fast searches with spatial tree data structures. We demonstrate how it can be computed efficiently from various data sets – both discrete points, and the generalization for continuous fields. We use data from a large suite of N-body simulations to explore the sensitivity of this new statistic to various cosmological parameters, compared to the two-point correlation function, while using the same range of scales. We demonstrate that the use of kNN-CDF improves the constraints on the cosmological parameters by more than a factor of 2 when applied to the clustering of dark matter in the range of scales between 10 and $40\, h^{-1}\, {\rm Mpc}$. We also show that relative improvement is even greater when applied on the same scales to the clustering of haloes in the simulations at a fixed number density, both in real space, as well as in redshift space. Since the kNN-CDF are sensitive to all higher order connected correlation functions in the data, the gains over traditional two-point analyses are expected to grow as progressively smaller scales are included in the analysis of cosmological data, provided the higher order correlation functions are sensitive to cosmology on the scales of interest.

Funder

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3