Affiliation:
1. Department of Philosophy, New York University, New York City, ny, United States, rgblong@gmail.com
Abstract
Abstract
As machine learning informs increasingly consequential decisions, different metrics have been proposed for measuring algorithmic bias or unfairness. Two popular “fairness measures” are calibration and equality of false positive rate. Each measure seems intuitively important, but notably, it is usually impossible to satisfy both measures. For this reason, a large literature in machine learning speaks of a “fairness tradeoff” between these two measures. This framing assumes that both measures are, in fact, capturing something important. To date, philosophers have seldom examined this crucial assumption, and examined to what extent each measure actually tracks a normatively important property. This makes this inevitable statistical conflict – between calibration and false positive rate equality – an important topic for ethics. In this paper, I give an ethical framework for thinking about these measures and argue that, contrary to initial appearances, false positive rate equality is in fact morally irrelevant and does not measure fairness.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献