On prediction-modelers and decision-makers: why fairness requires more than a fair prediction model

Author:

Scantamburlo TeresaORCID,Baumann JoachimORCID,Heitz ChristophORCID

Abstract

AbstractAn implicit ambiguity in the field of prediction-based decision-making concerns the relation between the concepts of prediction and decision. Much of the literature in the field tends to blur the boundaries between the two concepts and often simply refers to ‘fair prediction’. In this paper, we point out that a differentiation of these concepts is helpful when trying to implement algorithmic fairness. Even if fairness properties are related to the features of the used prediction model, what is more properly called ‘fair’ or ‘unfair’ is a decision system, not a prediction model. This is because fairness is about the consequences on human lives, created by a decision, not by a prediction. In this paper, we clarify the distinction between the concepts of prediction and decision and show the different ways in which these two elements influence the final fairness properties of a prediction-based decision system. As well as discussing this relationship both from a conceptual and a practical point of view, we propose a framework that enables a better understanding and reasoning of the conceptual logic of creating fairness in prediction-based decision-making. In our framework, we specify different roles, namely the ‘prediction-modeler’ and the ‘decision-maker,’ and the information required from each of them for being able to implement fairness of the system. Our framework allows for deriving distinct responsibilities for both roles and discussing some insights related to ethical and legal requirements. Our contribution is twofold. First, we offer a new perspective shifting the focus from an abstract concept of algorithmic fairness to the concrete context-dependent nature of algorithmic decision-making, where different actors exist, can have different goals, and may act independently. In addition, we provide a conceptual framework that can help structure prediction-based decision problems with respect to fairness issues, identify responsibilities, and implement fairness governance mechanisms in real-world scenarios.

Funder

Innosuisse

Horizon 2020

IRIS Academic Research Coalition

National Research Programme “Digital Transformation”

FP7 Ideas: European Research Council

Innosuisse - Schweizerische Agentur für Innovationsförderung

University of Zurich

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3